Constant mean curvature hypersurfaces in S n + 1 by gluing spherical building blocks
نویسندگان
چکیده
The techniques developed by Butscher (Gluing constructions amongst constant mean curvature hypersurfaces of Sn+1) for constructing constant mean curvature (CMC) hypersurfaces in Sn+1 by gluing together spherical building blocks are generalized to handle less symmetric initial configurations. The outcome is that the approximately CMC hypersurface obtained by gluing the initial configuration together can be perturbed into an exactly CMC hypersurface only when certain global geometric conditions are met. These balancing conditions are analogous to those that must be satisfied in the “classical” context of gluing constructions of CMC hypersurfaces in Euclidean space, although they are more restrictive in the Sn+1 case. An example of an initial configuration is given which demonstrates this fact; and another example of an initial configuration is given which possesses no symmetries at all.
منابع مشابه
Constant Mean Curvature Hypersurfaces in S by Gluing Spherical Building Blocks
The techniques developed by Butscher in [4] for constructing constant mean curvature (CMC) hypersurfaces in S by gluing together spherical building blocks are generalized to handle less symmetric initial configurations. The outcome is that the approximately CMC hypersurface obtained by gluing the initial configuration together can be perturbed into an exactly CMC hypersurface only when certain ...
متن کاملLinear Weingarten hypersurfaces in a unit sphere
In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].
متن کاملSpacelike hypersurfaces with constant $S$ or $K$ in de Sitter space or anti-de Sitter space
Let $M^n$ be an $n(ngeq 3)$-dimensional complete connected and oriented spacelike hypersurface in a de Sitter space or an anti-de Sitter space, $S$ and $K$ be the squared norm of the second fundamental form and Gauss-Kronecker curvature of $M^n$. If $S$ or $K$ is constant, nonzero and $M^n$ has two distinct principal curvatures one of which is simple, we obtain some charact...
متن کاملGeneralized Doubling Constructions for Constant Mean Curvature Hypersurfaces in S
The sphere S contains a simple family of constant mean curvature (CMC) hypersurfaces of the form Λp,q a ≡ S p(a)×Sq( √ 1− a) for p+ q+1 = n and a ∈ (0, 1) called the generalized Clifford hypersurfaces. This paper demonstrates that new, topologically non-trivial CMC hypersurfaces resembling a pair of neighbouring generalized Clifford tori connected to each other by small catenoidal bridges at a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009